[ FreeCourseWeb ] Fast, documented Machine Learning APIs with FastAPI

  • CategoryOther
  • TypeTutorials
  • LanguageEnglish
  • Total size757.8 MB
  • Uploaded Byfreecoursewb
  • Downloads32
  • Last checkedJul. 23rd '21
  • Date uploadedJul. 21st '21
  • Seeders 6
  • Leechers1

Infohash : F59A2CF144BD79FF05485663EA8C8DE499862F1F

Fast, documented Machine Learning APIs with FastAPI

MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 40m | Size: 757.8 MB
Use FastAPI to expose an HTTP API for fast live predictions using an ONNX Machine Learning Model. FastAPI is a Python web framework that provides easy development of documented HTTP APIs by offering self-documented endpoints with Swagger - a tool to describe, document, and use RESTful web services.
Learn how to quickly put together an API that validates requests, and self-documents its endpoints using OpenAPI via Swagger. Quickly produce a robust interface for others to consume your Machine Learning model by following core best-practices of MLOps.
Parts of this video cover the basics of packaging Machine Learning models, as covered in the Practical MLOps book.
Topics include:
* Create a Python project to serve live predictions using FastAPI
* Use a Dockerfile to package the model and the API using Docker containerization
* With minimal Python code, expose an ONNX model to perform sentiment analysis over an HTTP endpoint
* Dynamically interact with the API using the self-documented endpoint in the container.

Useful links:
* Github Repository with sample code
* Practical MLOps book
* FastAPI Intro tutorial
* RoBERTa ONNX Model for sentiment analysis

If You Need More Courses, kindly Visit and Support Us -->> https://FreeCourseWeb.com

Thank You.

Files:

[ FreeCourseWeb.com ] Fast, documented Machine Learning APIs with FastAPI
  • Get Bonus Downloads Here.url (0.2 KB)
  • ~Get Your Files Here !
    • Bonus Resources.txt (0.3 KB)
    • OnnxWithFastapi-Fast,documentedMachineLearningAPIswithFastAPI.mp4 (757.8 MB)

Code:

  • udp://tracker.torrent.eu.org:451/announce
  • udp://tracker.tiny-vps.com:6969/announce
  • http://tracker.foreverpirates.co:80/announce
  • udp://tracker.cyberia.is:6969/announce
  • udp://exodus.desync.com:6969/announce
  • udp://explodie.org:6969/announce
  • udp://tracker.opentrackr.org:1337/announce
  • udp://9.rarbg.to:2780/announce
  • udp://tracker.internetwarriors.net:1337/announce
  • udp://ipv4.tracker.harry.lu:80/announce
  • udp://open.stealth.si:80/announce
  • udp://9.rarbg.to:2900/announce
  • udp://9.rarbg.me:2720/announce
  • udp://opentor.org:2710/announce