Udemy - Face Mask Recognition Desktop App with Deep Learning & PyQT

  • CategoryOther
  • TypeTutorials
  • LanguageEnglish
  • Total size1.2 GB
  • Uploaded Byfreecoursewb
  • Downloads52
  • Last checkedOct. 11th '21
  • Date uploadedOct. 09th '21
  • Seeders 7
  • Leechers2

Infohash : ACC1C4929A30E26E2ED84236E7AC5D245B820E94

Face Mask Recognition Desktop App with Deep Learning & PyQT



MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 61 lectures (3h 59m) | Size: 958.6 MB
Learn Face Recognition for Face Mask Detection using Python, TensorFlow 2, OpenCV, PyQT, Qt
What you'll learn:
Face Recognition for Mask detection with Deep Learning
Develop Convolutional Network Network for Face Mask from Scratch using TensorFlow
Preprocess the big data of image
OpenCV for Face Detection

Requirements
Basic Python Knowledge
Familiar with Tensor Flow and Deep Learning
Familiar with Numpy and Pandas

Description
Project that you will be Developing:

Prerequisite of Project: OpenCV

Files:

[ CourseLala.com ] Udemy - Face Mask Recognition Desktop App with Deep Learning & PyQT
  • Get Bonus Downloads Here.url (0.2 KB)
  • ~Get Your Files Here ! 1. Introduction
    • 1. Introduction.mp4 (23.5 MB)
    • 1. Introduction.srt (3.4 KB)
    2. Setting Up Project
    • 1. Install Python.mp4 (16.9 MB)
    • 1. Install Python.srt (2.8 KB)
    • 2. Create Virtual Environment in Python.mp4 (4.7 MB)
    • 2. Create Virtual Environment in Python.srt (2.7 KB)
    • 3. Install Libraries like TensorFlow 2, OpenCV etc..mp4 (31.0 MB)
    • 3. Install Libraries like TensorFlow 2, OpenCV etc..srt (6.0 KB)
    3. Data Preparation & Preprocessing
    • 1. Download Resources.html (0.3 KB)
    • 10. Face Detection Load Model.mp4 (6.8 MB)
    • 10. Face Detection Load Model.srt (1.9 KB)
    • 11. Face Detection Blob from Image.mp4 (16.4 MB)
    • 11. Face Detection Blob from Image.srt (4.0 KB)
    • 12. Draw Bounding Box for Detected Face.mp4 (41.6 MB)
    • 12. Draw Bounding Box for Detected Face.srt (9.0 KB)
    • 13. Step - 4, Crop the Detected Face.mp4 (30.4 MB)
    • 13. Step - 4, Crop the Detected Face.srt (5.0 KB)
    • 14. Step - 5, Image Processing - Blob from Image (RGB mean subtraction image).mp4 (37.1 MB)
    • 14. Step - 5, Image Processing - Blob from Image (RGB mean subtraction image).srt (8.5 KB)
    • 15. Step - 5, Image Processing - Rotate & Flip Image.mp4 (19.4 MB)
    • 15. Step - 5, Image Processing - Rotate & Flip Image.srt (3.9 KB)
    • 16. Step -5, Remove Negative values and Normalize.mp4 (19.6 MB)
    • 16. Step -5, Remove Negative values and Normalize.srt (4.5 KB)
    • 17. Apply Data Preparation process to All images.mp4 (35.6 MB)
    • 17. Apply Data Preparation process to All images.srt (9.2 KB)
    • 18. Step - 6, Save Preprocessed Data in Numpy zip.mp4 (12.9 MB)
    • 18. Step - 6, Save Preprocessed Data in Numpy zip.srt (3.6 KB)
    • 2. Data.mp4 (36.2 MB)
    • 2. Data.srt (7.3 KB)
    • 2.1 1_Download_the_data.pdf (571.7 KB)
    • 3. Data Preparation Process.mp4 (24.1 MB)
    • 3. Data Preparation Process.srt (5.3 KB)
    • 4. Data Preparation Import Required Python Libraries.mp4 (11.3 MB)
    • 4. Data Preparation Import Required Python Libraries.srt (4.0 KB)
    • 5. Data Preparation Get all Images Path in Folder.mp4 (24.6 MB)
    • 5. Data Preparation Get all Images Path in Folder.srt (6.7 KB)
    • 6. Data Preparation Labeling.mp4 (8.8 MB)
    • 6. Data Preparation Labeling.srt (2.0 KB)
    • 7. Data Preparation Get Images Path and Labelling Images in multiple Folders.mp4 (22.1 MB)
    • 7. Data Preparation Get Images Path and Labelling Images in multiple Folders.srt (2.6 KB)
    • 8. Step - 3, Face Detection.mp4 (4.9 MB)
    • 8. Step - 3, Face Detection.srt (1.2 KB)
    • 9. Face Detection Read Image.mp4 (10.4 MB)
    • 9. Face Detection Read Image.srt (2.5 KB)
    4. Face Recognition Model for Mask Identification with Deep Learning
    • 1. Load Numpy Zip Data into Notebook.mp4 (14.0 MB)
    • 1. Load Numpy Zip Data into Notebook.srt (5.0 KB)
    • 2. One Hot Encoding to target or output variable (y).mp4 (21.1 MB)
    • 2. One Hot Encoding to target or output variable (y).srt (5.8 KB)
    • 3. Split the Data into Train and Test sets.mp4 (10.1 MB)
    • 3. Split the Data into Train and Test sets.srt (3.2 KB)
    • 4. Convolutional Neural Network Architecture.mp4 (13.3 MB)
    • 4. Convolutional Neural Network Architecture.srt (9.1 KB)
    • 5. Develop CNN model in TensorFlow 2.mp4 (35.2 MB)
    • 5. Develop CNN model in TensorFlow 2.srt (9.0 KB)
    • 6. Compile CNN model, Setting Adam Optimizer & Loss Function.mp4 (20.8 MB)
    • 6. Compile CNN model, Setting Adam Optimizer & Loss Function.srt (4.2 KB)
    • 7. Train CNN model.mp4 (11.4 MB)
    • 7. Train CNN model.srt (2.9 KB)
    • 8. Save Deep Learning Model in TensorFlow.mp4 (24.8 MB)
    • 8. Save Deep Learning Model in TensorFlow.srt (5.3 KB)
    5. Predictions with Face Recognition model for Face Mask
    • 1. Load TensorFlow based CNN Model in a Notebook.mp4 (19.6 MB)
    • 1. Load TensorFlow based CNN Model in a Notebook.srt (6.8 KB)
    • 2. Defining Labels and Setting Colors.mp4 (15.4 MB)
    • 2. Defining Labels and Setting Colors.srt (4.9 KB)
    • 3. Step - 1, Face Detection.mp4 (49.4 MB)
    • 3. Step - 1, Face Detection.srt (13.3 KB)
    • 4. Step -2, Data Preprocess.mp4 (31.2 MB)
    • 4. Step -2, Data Preprocess.srt (6.9 KB)
    • 5. Step - 3, Get Predictions from CNN Model for Face Mask.mp4 (33.7 MB)
    • 5. Step - 3, Get Predictions from CNN Model for Face Mask.srt (6.2 KB)
    • 6. Generate text for Prediction info.mp4 (28.6 MB)
    • 6. Generate text for Prediction info.srt (5.0 KB)
    • 7. Get Face Mask Prediction to an Image.mp4 (33.5 MB)
    • 7. Get Face Mask Prediction to an Image.srt (5.7 KB)
    • 8. Real Time Face Mask Prediction.mp4 (28.5 MB)
    • 8. Real Time Face Mask Prediction.srt (5.6 KB)
    6. PyQt Basics
    • 1. What you will Develop.mp4 (13.6 MB)
    • 1. What you will Develop.srt (1.5 KB)
    • 10. QLabel.mp4 (30.7 MB)
    • 10. QLabel.srt (7.5 KB)
    • 11. QLineEdit.mp4 (12.0 MB)
    • 11. QLineEdit.srt (3.0 KB)
    • 12. QPushButton.mp4 (9.0 MB)
    • 12. QPushButton.srt (2.5 KB)
    • 13. QComboBox.mp4 (9.8 MB)
    • 13. QComboBox.srt (2.2 KB)
    • 14. Placing & Arranging Widgets.mp4 (5.0 MB)
    • 14. Placing & Arranging Widgets.srt (2.2 KB)
    • 15. Placing Widgets using QHBoxLayout and QVBoxLayout.mp4 (41.1 MB)
    • 15. Placing Widgets using QHBoxLayout and QVBoxLayout.srt (9.3 KB)
    • 16. Signals and Slots.mp4 (24.3 MB)
    • 16. Signals and Slots.srt (4.5 KB)
    • 17. Backend Operations in PyQt.mp4 (48.9 MB)
    • 17. Backend Operations in PyQt.srt (8.7 KB)
    • 2. Install Visual Studio Code.mp4 (28.5 MB)
    • 2. Install Visual Studio Code.srt (8.4 KB)
    • 3. Setting Up Project.mp4 (28.5 MB)
    • 3. Setting Up Project.srt (8.4 KB)
    • 4. Install PyQt and Connect VS code to Virtual Environment.mp4 (5.4 MB)

Code:

  • udp://tracker.torrent.eu.org:451/announce
  • udp://tracker.tiny-vps.com:6969/announce
  • http://tracker.foreverpirates.co:80/announce
  • udp://tracker.cyberia.is:6969/announce
  • udp://exodus.desync.com:6969/announce
  • udp://explodie.org:6969/announce
  • udp://tracker.opentrackr.org:1337/announce
  • udp://9.rarbg.to:2780/announce
  • udp://tracker.internetwarriors.net:1337/announce
  • udp://ipv4.tracker.harry.lu:80/announce
  • udp://open.stealth.si:80/announce
  • udp://9.rarbg.to:2900/announce
  • udp://9.rarbg.me:2720/announce
  • udp://opentor.org:2710/announce